Monday, February 13, 2017

New Opportunity on PAT-580 HDMI Wireless | PAKITE

The unit price of Full HD wireless av sender(what is it?) expensive, but the transmission range is very short. so now PAKITE develop a new model wireless HDMI transmitter and receiver with long transmission range but cheaper.
PAT-580 is newest wireless HDMI video transmitter developed by PAKITE. Most of typical model like PAT-220/PAT-530 is RCA jack, but right now, most of tv cable box has HDMI Jack only, so we have to follow the times. It’s a new model with interface - HDMI, that support HDMI 1.4/2.0.
HDMI Transmitter and Receiver
Look at the transmitter, there is two HDMI interface, one HDMI input and another HDMI output. HDMI input is for connect with signal source, like DVD/TV Cable Box/NVR, the HDMI output is for connect with TV directly, which means one sets PAT-580 could connect two set TV. About the receiver, there is only one HDMI output interface connect with TV, it keeps the long distance transmission function, so you can place the PAT-580 at different rooms.
The transmission range 300 meters is for open space, if there is obstacle between transmitter and receiver, then the transmission distance will be weaken, after passed one wall, the transmission range around 10-15 meters. Also the transmission distance is depend on the wall thickness.

Saturday, February 11, 2017

How to select a worthy TV to TV Sender

 
 
TV to TV Sender, also known as wireless av sender, audio/video transceiver, av signal extender, or wireless video transmitter and receiver. It's for transmit audio and video signal wirelessly from signal source like cable box or blue-ray player to viewing device like television or IPTV. By using a TV to TV Sender, you can place your RCA or HDMI port device anywhere(like kitchen, bedroom, garden, dinning room) in your house as you like, and no need to running much wires. RCA wireless connection by using an universal TV to TV Sender, and HDMI to HDMI wireless connection by using a HDMI av sender. There are different types of TV to TV Sender, like different transmission range, different anti-interference ability, different force of penetration. So you should do some research to select a worthy AV Sender.

How a TV Sender Works

Wireless TV to TV Sender Transmitter and ReceiverTo make an informed decision when it comes to buying a TV to TV Sender, the buyer must first understand how a TV Sender works. A TV sender is connected to the main television by way of a SCART socket. The SCART socket is the largest socket located on the back of the television.
The receiver is plugged into the secondary television by way of its SCART connection. Once connected, the secondary TV is able to receives radio signals transmitted from the TV to TV sender connected to the main television in the other room.
With a TV sender, the user can view the television signal on two different televisions in two different rooms. The receiver can also send a wireless signal to the TV sender, commanding it to perform specific functions, such as changing the volume. This is only possible through the use of an infrared sensor on the receiver. The remote control for the main television can be used with the receiver from the secondary television. The remote control is pointed at the infrared sensor on the receiver. When the user pushes the volume button, a signal is transmitted from the secondary TV to the TV sender on the main television. It is important to source an additional remote control as this avoids the user having to take the remote control with them when they move to another room to watch television.

Types of TV Senders

There are two basic types of TV senders: low-definition and high-definition TV senders. Each transmits in a specific frequency range: 2.4 GHz or 5.8 GHz. The different frequencies are transmitted by radio waves through the use of an antenna attached to the sender and receiver. The frequency range determines the overall quality of the transmission signal of the sender to the receiver.

Low-Definition, 2.4GHz

A low-definition, 2.4 GHz TV sender is more affordable than a high-definition, 5.8 GHz TV sender. It is more affordable, because it is used to link standard televisions. The low-definition, 2.4 GHz TV sender’s television picture may be fuzzy or difficult to view due to frequency interference caused by other devices in the home. Such sources could include baby monitors, WiFi, and anything that operates with a 2.4 GHz frequency.

High-Definition, 5.8 GHz

A high-definition, 5.8 GHz TV sender is more expensive than a low-definition, 2.4 GHz TV sender. The high-definition, 5.8 GHz TV sender employs a relatively new form of technology that is still evolving. It is more expensive because the signal output and picture are clearer, and the range of transmission extends further than a low-definition, 2.4 GHz TV sender's transmission range. This newer technology allows several high-definition devices like Blu-ray players to connect to the TV sender rather than just one device. An HDMI splitter is required to connect the television and the high-definition sources with each other. With this setup, there is little interference from other radio frequencies as is the case with the low-definition, 2.4 GHz TV sender.
When there is interference such as with 5.8 GHz cordless telephones, the user can change the specific channel within the frequency band to a channel other than the one used by the cordless telephones. Both the TV sender and receiver broadcast frequency channels should be the same. With the high-definition, 5.8 GHz TV sender, the transmission signal can extend up to nine metres, depending on the thickness of walls. This extended range of transmission is made possible through a remote control extender.

Remote Control Extender

A special feature of a high-definition, 5.8 GHz TV sender is a remote control extender. The remote control extender requires a base unit and an extender unit to operate. The base unit is positioned in the room with the primary television. The extender unit is positioned in the room with the secondary television. When the remote control transmits signals to the extender unit, they are carried wirelessly to the base unit.
If the transmitter on the extender unit does not make line of sight contact with the remote control sensor, the base unit located in the other room may not receive the command transmission. Batteries are also not strong enough for effective transmission between base unit and extender unit. Both units need to be plugged into a wall outlet or other compatible power supply.
The following table illustrates some key differences between the two basic types of TV senders. The differences are in the areas of transmission range, signal quality, and cost.

AV Sender

Transmission range

Signal Quality

Cost

Low-definition, 2.4 GHz
Low
Depending on surrounding wireless devices
Inexpensive
High-definition, 5.8 GHz
High, extending to 9 m with remote control extender
Suffers little interference from surrounding wireless devices
Expensive
The table above highlights the key features of low-definition, 2.4 GHz and high-definition, 5.8 GHz TV senders. These are generalisations only. The buyer needs to keep in mind that the signal's transmission may be affected by other radio transmitting devices like cordless phones, baby monitors, and the home WiFi network. Less frequency interference means better picture quality.

Limitations of TV Senders

Along with these positive aspects, there are some drawbacks to using the device. The buyer should be aware of these issues so that they can make an informed purchasing decision.

Multiple Senders

When a buyer purchases more than one TV sender, it is important to remember that the TV senders may transmit signals on the same frequency band. This can cause signal interference between the TV senders, resulting in poor picture quality. The buyer should select different frequency bands for each TV sender.

Channel Transmission

The transmission of television signals through walls is an important aspect of the overall operation of a TV sender. The signal, though, cannot transmit multiple television channels at a time. Only a single television channel can be transmitted and watched on both televisions at one time.

Friday, February 10, 2017

How to Read Wireless Audio/Video Transmitter Specifications

An audio video transmitter, known as av sender, sometimes called a wireless tv transmitter, can be used to share the satellite TV connection in the living room with a TV in the bedroom or kitchen without moving any devices, and one set av sender contain a transmitter and a receiver. This can be a great convenience for people who have multiple televisions in their houses, and do not want to have to move a device like a DVD player from room to room, unplugging and plugging in cables and power cords, just to watch a movie on a different TV. Instead, users can send the information to the other television using an audio/video transmitter.
Transmitters are devices that broadcast a signal from one device to another, creating a larger distribution network and allowing more devices to connect to the service. Because they combine wireless technology with basic television technology, the specifications listed can be difficult to understand. Below is an explanation of each specification area and what to look for when making a purchase.


History of Transmission

PAKITE Wireless HDMI Video Transmitter and Receiver
The modern audio/video transmission system did not begin until 1936, when Don Lee began demonstrations and prototype testing for a broadcasting system that transmitted 30 lines. These transmissions contained only black and white images. The first color transmissions began in 1954, when compatible TVs became available on the market. Black and white transmissions were completely ended in 1975. In the mid-1990s, many stations began updating to digital service, and offered users a digital option. In 2009, the United States eliminated analog video transmissions, and began transmitting solely in digital.


Different Specification Areas

There a variety of different specifications that a user needs to be familiar with before purchasing a wireless av sender.

Transmission Method

Today, there are two main types of transmission used, cable transmission and wireless transmission. Cable transmission uses common coaxial cable to connect the transmitter and the receiver. Wireless transmission systems use wireless radio signals, much like a wireless router, to transmit the information to the receiver. Some older video/audio transmitters also used infrared signals to transmit information. When using infrared technology, the transmitter and receiver had to be in direct line with one another without barriers for information to be transmitted. Wireless technology rapidly made these infrared devices obsolete. When looking at various audio/video transmitters, consider the transmission method that will work in the locations where the transmitter will be used.

Watts

Video transmission systems for home use are available in one, two, and five watt varieties. Long-distance systems designed for business use, however, are available in 10 and 20 watt as well. The number of watts relates to the amount of power needed for operation and can affect transmission distance; however, a two-watt system is capable of long distance transmission, so users need not be concerned with low wattage affecting performance. A low-watt system will save users money because they impact electrical bills less. Typically, one watt will transmit over 1000 feet, three watts will transmit over seven miles, and 20 watts will transmit over 50 miles. When looking at audio/video transmitters, choose the lowest wattage possible to save on electrical expenses while still covering the necessary distance.

Frequency

The system's frequency dictates what radio frequency is used to transmit information between the transmitter and the receiver on wireless transmission models. If the transmitter is running on the same frequency as other household devices, it will cause interference and degrade the quality of the sound and video being transmitted. Common frequencies include 900 MHz, 1.2 GHz, 1.3 GHz, 2.4 GHz, 5.4 GHz, and 5.8 GHz. Which frequency is best for a user depends on what else is being used in the space that could cause interference. Many radios run on the 2.4 GHz bandwidth, as do remote controls, microwaves, phones, and even wireless routers. It is illegal to use 1.2 GHz devices in the United States because it is a reserved bandwidth. As a general rule, the higher the frequency of the audio/video transmitter, the less likely it is to experience serious interference from other devices in the home, and the more robust it is, making it less likely to deteriorate as it passes through barrier objects. Because of this, buyers should consider higher frequency audio/video transmitters and those on frequencies that are not already being used in the home or office to avoid interference problems.

Range

Range determines the number of feet the audio/video transmitter will spread the information. All receivers working from the transmitter must be within this range to receive a strong and uninterrupted signal. Range is determined by a combination of the wattage, frequency, and signal strength emitted. Remember that the range given in the specifications section is a maximum range and is only an estimate. If there are barriers in between the transmitter and the receiver it will shorten the range; this happens because the signal strength will be lost to some degree as it passes through the barrier.

Number of Channels

Channels are labeled with letters rather than numbers, and do not refer to the number of television channels they can transmit; rather, changing the transmitter's channel means altering what air channel the transmitter is sending signals in. The transmitter and receiver must be set to the same channel for information to be appropriately transmitted. Small transmitters may only use one or two channels, while long-distance transmitters may have up to eight channels, such as PAKITE wireless av senders are 8 channels. By changing the channel that the audio/video transmitter is using, the user can eliminate part or all of any interference that is experienced and improve picture and sound quality.

Maximum Resolution

Resolution is a measure of lines being transmitted to a device. Keep in mind that the earliest transmissions had only 30 lines, and that the standard analog TV has 460 lines of color. Today, televisions typically have between 760 and 1080 lines. This number is also accompanied by a letter: p stands for progressive scan, and i stand for interlaced lines. Resolutions with progressive scan technology create a better picture than those with interlaced lines. It is important that the maximum resolution transmitted by the audio/video transmitter is at least as high as the resolution of the television being transmitted to. For example, if a television has a resolution of 760p, there is no need to have a transmitter that transmits at 1080. 1080p is the highest current resolution for high-definition televisions and transmitters.

Dimensions

The dimensions given, typically in millimeters (mm) or centimeters (cm), are the physical dimensions of the transmitter. These are important to know if the user has a specific space in mind for placing the transmitter and needs to make sure that the transmitter selected will fit. Dimensions are typically given in the LHW format, which means the first number given is the length, the second number given is the height, and the third number given is the width.

Transmitter Input Connection and Receiver Output Connections

The transmitter must be able to connect to the signal source, like the cable or satellite box, and the receiver must be able to connect to the television or viewing device. Below is a chart that shows the most common cable types, how they can be recognized, and what information they transmit. Make sure that the transmitter and receiver are fully compatible with the signal source and the viewing device before selecting a transmitter for purchase.

Cable Type

How to Recognize It

Information Carried

Coaxial Cable
This is a traditional antenna or satellite cable. It has a single pin in the center of a screw-on metal end.
Carries both audio and video in a single wire
Composite
RCA or AV port. Video is marked with a yellow end, and sound is marked with red and white, for the left and right sides.
Carries video and audio when all three cords are used in tandem. Some cord sets are individual and some are permanently bound by a plastic exterior.
S - Video
Has a 4-pin plug-in style connector.
Transmits video only; sound must be transmitted via composite sound cables.
Component
The cables are color-coded: blue, green, and red.
Three separate cables are used to carry brightness, color, and luminance. Red and white composite cables must be used for sound with this video system.
Multi-pin, long flat connection used to connect most high-definition devices.
The highest quality, highest speed cable connection. It's just used for HDMI av sender. It is only compatible with high-definition devices.
USB
Rectangular USB end, like those on the end of flash drives and other computer products.
Sends both audio and video information using a high-speed USB cable. Useful in connecting to computers and projectors. Also necessary to load updates on updatable transmitters.

When selecting an audio/video transmitter, buyers should be sure to choose a transmitter with the right connections for both the signal source and the receiver television.

Repeater Specifications

Transmitters may or may not come with a repeater. A repeater is exactly what it sounds like, a device that repeats the single being transmitted. A repeater connects to the transmitter remotely, and sends out a duplicate transmission signal. This means that it expands the range and enables devices that are outside of the transmitter's range to pick up the repeater's signal and access the information. They must be programmed to the same channel as the transmitter and the receiver.